Loading...
The University of Aizu, Aizu-Wakamatsu, Japan
+81-8048340999

                         

Synthetic Geo-referenced database generator


This page describes the process to generate the following databases:
  1. Geo-referenced transactional database
  2. Geo-referenced temporal database
  3. Geo-referenced utility database
  4. Geo-referenced uncertain transactional database
  5. Geo-referenced uncertain temporal database

















                         

Synthetic Geo-referenced transactional database generator

The code to generate geo-referenced transactional database is as follows:
#import the algorithm
from PAMI.extras.syntheticDataGenerator import georeferencedTransactionalDatabase as gtdb #specify the parameters databaseSize = 100000 numberOfItems = 2000 averageLengthOfTransaction = 10 #bounding box minimumXvalue = 0 minimumYvalue = 0 maximumXvalue = 100 maximumYvalue = 100 #The above four lines ensure that the spatial information of every item in the database lie within (0, 0) and (100, 100). #initialize the algorithm alg = gtdb.georeferencedTransactionalDatabase(databaseSize, numberOfItems, averageLengthOfTransaction) #execute the algorithm alg.generate() #save the generated data in a file alg.save(fileName) alg.saveLocationData(fileName2) #Get the generated data as a dataframe (Optional feature) dataFrame = alg.getData() locationDataFrame = alg.getLocationData()










                         

Synthetic Geo-referenced temporal database generator

The code to generate a geo-referenced temporal database is as follows:
#import the algorithm
from PAMI.extras.syntheticDataGenerator import georeferencedTemporalDatabase as gtempdb #specify the parameters databaseSize = 100000 numberOfItems = 2000 averageLengthOfTransaction = 10 probabilityToMissNextTimestamp = 0 # 0 (or 0%) - regular temporal database with uniform time gap between the transactions # <1 (or <100%) - irregular temporal database with non-uniform time gaps between the transactions probabilityOfRecurrenceOfTimestampInNextTransaction = 20 # 0 (or 0%) - every transaction will have a different timestamp # 1 (or 100%) - every transaction will have the same timestamp #bounding box minimumXvalue = 0 minimumYvalue = 0 maximumXvalue = 100 maximumYvalue = 100 #The above four lines ensure that the spatial information of every item in the database lie within (0, 0) and (100, 100). #initialize the algorithm alg = gtempdb.georeferencedTemporalDatabase(databaseSize, numberOfItems, \ averageLengthOfTransaction, \ probabilityToMissNextTimestamp,\ probabilityToMissNextTimestamp, \ minimumXvalue, minimumYvalue,\ maximumXvalue,maximumYvalue) #execute the algorithm alg.generate() #save the generated data in a file alg.save(fileName) alg.saveLocationData(fileName2) #optional #Get the generated data as a dataframe (Optional features) dataFrame = alg.getData() locationDataFrame = alg.getLocationData()










                         

Synthetic Geo-referenced utility database generator

The code to generate a geo-referenced utility database is as follows:
#import the algorithm
from PAMI.extras.syntheticDataGenerator import georeferencedUtilityDatabase as gudb #specify the parameters databaseSize = 100000 numberOfItems = 2000 averageLengthOfTransaction = 10 minimumInternalUtilityValue = 1 maximumInternalUtilityValue = 100 minimumExternalUtilityValue = 1 maximumExternalUtilityValue = 10 #initialize the algorithm alg = udb.utilityDatabase(databaseSize, numberOfItems, \ averageLengthOfTransaction,\ minimumInternalUtilityValue,\ maximumInternalUtilityValue,\ minimumExternalUtilityValue,\ maximumExternalUtilityValue) #execute the algorithm alg.generate() #save the generated data in a file alg.save(fileName1) alg.saveItemsInternalUtilityValues(fileName2) alg.saveItemsExternalUtilityValues(fileName3) #Get the generated data as a dataframe (Optional feature) utilityDF = alg.getUtilityData() internalUDF = alg.getInternalUtilityData() externalUDF = alg.getExternalUtilityData()