#import the algorithm
from PAMI.extras.syntheticDataGenerator import utilityDatabase as udb
#specify the parameters
databaseSize = 100000
numberOfItems = 2000
averageLengthOfTransaction = 10
minimumInternalUtilityValue = 1
maximumInternalUtilityValue = 100
minimumExternalUtilityValue = 1
maximumExternalUtilityValue = 10
#initialize the algorithm
alg = udb.utilityDatabase(databaseSize, numberOfItems, \
averageLengthOfTransaction,\
minimumInternalUtilityValue,\
maximumInternalUtilityValue,\
minimumExternalUtilityValue,\
maximumExternalUtilityValue)
#execute the algorithm
alg.generate()
#save the generated data in a file
alg.save(fileName1)
alg.saveItemsInternalUtilityValues(fileName2)
alg.saveItemsExternalUtilityValues(fileName3)
#Get the generated data as a dataframe (Optional feature)
utilityDF = alg.getUtilityData()
internalUDF = alg.getInternalUtilityData()
externalUDF = alg.getExternalUtilityData()